Search results

Search for "hybrid nanomaterials" in Full Text gives 15 result(s) in Beilstein Journal of Nanotechnology.

Nanoarchitectonics to entrap living cells in silica-based systems: encapsulations with yolk–shell and sepiolite nanomaterials

  • Celia Martín-Morales,
  • Jorge Fernández-Méndez,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2023, 14, 522–534, doi:10.3762/bjnano.14.43

Graphical Abstract
  • present protocols. Keywords: biohybrids; cell immobilization; encapsulation; microorganism entrapment; silicates; Introduction Bio-inorganic hybrid nanomaterials with highly specific functionalities can be prepared following Nature’s design approaches [1]. A wide range of materials resulting from the
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2023

Zinc oxide nanostructures for fluorescence and Raman signal enhancement: a review

  • Ioana Marica,
  • Fran Nekvapil,
  • Maria Ștefan,
  • Cosmin Farcău and
  • Alexandra Falamaș

Beilstein J. Nanotechnol. 2022, 13, 472–490, doi:10.3762/bjnano.13.40

Graphical Abstract
  • years due to important advantages that they offer, for example, good recyclability, long-term use, and cost effectiveness. For ultrasensitive detection of molecules, however, the SERS performance of standalone semiconductor substrates is too weak. Therefore, the development of hybrid nanomaterials based
  • their wide bandgap energy (3.3–3.7 eV), strong luminescence [4][5], antibacterial properties, and UV-protection properties. Additionally, ZnO nanomaterials can be designed into various morphologies, such as nanoparticles, nanoneedles, nanorods, nanocages, nanocombs, and nanoflowers [5][6][7][8]. Hybrid
  • nanomaterials can be obtained by combining ZnO with metal NPs, thus integrating the material properties of both components and resulting in new and enhanced properties that are not obtainable from the single component nanoparticles. Recent studies showed that ZnO properties can be tuned and improved when
PDF
Album
Review
Published 27 May 2022

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
PDF
Album
Supp Info
Review
Published 04 Jan 2022

Photothermally active nanoparticles as a promising tool for eliminating bacteria and biofilms

  • Mykola Borzenkov,
  • Piersandro Pallavicini,
  • Angelo Taglietti,
  • Laura D’Alfonso,
  • Maddalena Collini and
  • Giuseppe Chirico

Beilstein J. Nanotechnol. 2020, 11, 1134–1146, doi:10.3762/bjnano.11.98

Graphical Abstract
  • in 77% planktonic P. aeruginosa cell death. In addition, polyurethane nanocomposites containing the same hybrid nanomaterials were also able to eliminate all the surface-grafted P. aeruginosa cells under NIR light irradiation. Reduced graphene oxide, which is characterized by a broad absorption
  • , especially in the case when several nanoparticles are combined. Moreover, more studies demonstrating the advantages of using sunlight as opposed to lasers should be performed. Finally, since most of the used nanoparticles and hybrid nanomaterials absorb in the NIR bio-transparent window, this allows for the
PDF
Album
Review
Published 31 Jul 2020

A few-layer graphene/chlorin e6 hybrid nanomaterial and its application in photodynamic therapy against Candida albicans

  • Selene Acosta,
  • Carlos Moreno-Aguilar,
  • Dania Hernández-Sánchez,
  • Beatriz Morales-Cruzado,
  • Erick Sarmiento-Gomez,
  • Carla Bittencourt,
  • Luis Octavio Sánchez-Vargas and
  • Mildred Quintana

Beilstein J. Nanotechnol. 2020, 11, 1054–1061, doi:10.3762/bjnano.11.90

Graphical Abstract
  • results in the decay of ROS production due to molecular degradation. There have been several attempts to enhance the PDT properties of organic molecules like Ce6 by the preparation of composites using nanoparticles [14][15][16]. Such hybrid nanomaterials take advantage of both the good photosensitizer
PDF
Album
Full Research Paper
Published 17 Jul 2020

Advanced hybrid nanomaterials

  • Andreas Taubert,
  • Fabrice Leroux,
  • Pierre Rabu and
  • Verónica de Zea Bermudez

Beilstein J. Nanotechnol. 2019, 10, 2563–2567, doi:10.3762/bjnano.10.247

Graphical Abstract
  • .10.247 Keywords: colloidal chemistry; environmental remediation; hybrid nanomaterials; nanocomposite; nanofillers; nanomedicine; nanostructures; polymer fillers; pore templating; smart materials; The Maya blue pigment that was used in Mexico during the VIIIth century is often given as a prototypical
  • into a broad scientific and technological subject including important fields such as sol–gel chemistry [4][5], polymer nanocomposites [6][7], and hybrid nanomaterials [8][9]. Nowadays, hybrid materials are almost everywhere and provide a wide range of applications from biology and health, to photonic
  • specialized experimental and theoretical techniques. This thematic issue clearly shows that “advanced hybrid nanomaterials” is not just hype, it is a real and powerful toolbox towards advanced materials for highly diverse fields, such as polymer nanocomposite, health and environment. Smart Materials and
PDF
Editorial
Published 20 Dec 2019

pH-Controlled fluorescence switching in water-dispersed polymer brushes grafted to modified boron nitride nanotubes for cellular imaging

  • Saban Kalay,
  • Yurij Stetsyshyn,
  • Volodymyr Donchak,
  • Khrystyna Harhay,
  • Ostap Lishchynskyi,
  • Halyna Ohar,
  • Yuriy Panchenko,
  • Stanislav Voronov and
  • Mustafa Çulha

Beilstein J. Nanotechnol. 2019, 10, 2428–2439, doi:10.3762/bjnano.10.233

Graphical Abstract
  • (DU145) and are suitable for further evaluation in cellular imaging applications. Keywords: boron nitride nanotubes; cellular imaging; fluorescence; pH switching; polymer brushes; surface modification; Introduction In recent years, considerable effort has been devoted to the development of hybrid
  • nanomaterials [1][2][3][4][5] to generate novel structures with tunable properties through external stimuli such as pH, temperature, light, and magnetic field [6][7][8][9][10]. Among other nanomaterials, significant research effort has been dedicated to the use of nanotubes [1][2][3][4][6][7][11][12][13][14][15
PDF
Album
Supp Info
Full Research Paper
Published 10 Dec 2019

Hydrophilicity and carbon chain length effects on the gas sensing properties of chemoresistive, self-assembled monolayer carbon nanotube sensors

  • Juan Casanova-Cháfer,
  • Carla Bittencourt and
  • Eduard Llobet

Beilstein J. Nanotechnol. 2019, 10, 565–577, doi:10.3762/bjnano.10.58

Graphical Abstract
  • characteristics of the different thiols considered. Finally, the mechanisms for the interaction between gas molecules and the hybrid nanomaterials, which explain the experimental results obtained with the different sensors tested, are introduced and discussed. Results and Discussion Material characterization
  • their most characteristic peaks in the resulting hybrid nanomaterials, because the high intensity peaks from MWCNTs had a masking effect in the survey spectra. For this reason, specific regions of the Raman spectrum in which no peaks from MWCNTs appear were acquired in order to confirm the presence of
PDF
Album
Supp Info
Full Research Paper
Published 27 Feb 2019

Wet chemistry route for the decoration of carbon nanotubes with iron oxide nanoparticles for gas sensing

  • Hussam M. Elnabawy,
  • Juan Casanova-Chafer,
  • Badawi Anis,
  • Mostafa Fedawy,
  • Mattia Scardamaglia,
  • Carla Bittencourt,
  • Ahmed S. G. Khalil,
  • Eduard Llobet and
  • Xavier Vilanova

Beilstein J. Nanotechnol. 2019, 10, 105–118, doi:10.3762/bjnano.10.10

Graphical Abstract
  • study of the gas sensing properties of the different hybrid nanomaterials was conducted in an effort to determine the optimal functionalization parameters to maximize sensor response. The selectivity of the resulting layer for potential interfering gases such as CO and benzene has also been investigated
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2019

Size-selected Fe3O4–Au hybrid nanoparticles for improved magnetism-based theranostics

  • Maria V. Efremova,
  • Yulia A. Nalench,
  • Eirini Myrovali,
  • Anastasiia S. Garanina,
  • Ivan S. Grebennikov,
  • Polina K. Gifer,
  • Maxim A. Abakumov,
  • Marina Spasova,
  • Makis Angelakeris,
  • Alexander G. Savchenko,
  • Michael Farle,
  • Natalia L. Klyachko,
  • Alexander G. Majouga and
  • Ulf Wiedwald

Beilstein J. Nanotechnol. 2018, 9, 2684–2699, doi:10.3762/bjnano.9.251

Graphical Abstract
  • exposure and after precultivation of the cells for 6 h with 25 nm Fe3O4–Au hybrid nanomaterials, respectively. This confirms that the improved magnetic properties of the bifunctional particles present a next step in magnetic-particle-based theranostics. Keywords: hybrid nanoparticles; magnetic
  • water and agarose mimicking tissues, is obtained for 25 nm diameter Fe3O4–Au NPs. This also allows for efficient NP visualization and heating in in vitro conditions, leading to the death of 4T1 mouse breast adenocarcinoma cells in high-frequency alternating magnetic fields. Therefore, these hybrid
  • nanomaterials are demonstrated to exhibit an optimized theranostic response in magnetic resonance imaging and magnetic particle hyperthermia. Experimental Materials Iron pentacarbonyl Fe(CO)5, hydrogen tetrachloroaurate trihydrate (III) HAuCl4∙3H2O, oleic acid, oleylamine, phenyl ether, benzyl ether, 1
PDF
Album
Supp Info
Full Research Paper
Published 16 Oct 2018

BN/Ag hybrid nanomaterials with petal-like surfaces as catalysts and antibacterial agents

  • Konstantin L. Firestein,
  • Denis V. Leybo,
  • Alexander E. Steinman,
  • Andrey M. Kovalskii,
  • Andrei T. Matveev,
  • Anton M. Manakhov,
  • Irina V. Sukhorukova,
  • Pavel V. Slukin,
  • Nadezda K. Fursova,
  • Sergey G. Ignatov,
  • Dmitri V. Golberg and
  • Dmitry V. Shtansky

Beilstein J. Nanotechnol. 2018, 9, 250–261, doi:10.3762/bjnano.9.27

Graphical Abstract
  • 10.3762/bjnano.9.27 Abstract BN/Ag hybrid nanomaterials (HNMs) and their possible applications as novel active catalysts and antibacterial agents are investigated. BN/Ag nanoparticle (NP) hybrids were fabricated using two methods: (i) chemical vapour deposition (CVD) of BN NPs in the presence of Ag
  • . Keywords: antibacterial agents; BN/Ag hybrid nanomaterials; catalysts; chemical vapour deposition; nanomaterials; Introduction New hybrid nanomaterials are the key components of the next generation advanced catalysts and biomaterials. Novel and unique properties can be obtained while employing synergetic
  • utilized toward the development of cutting-edge hybrid nanostructures. For example, BN/noble metal (Pt, Au, Ag) hybrid nanomaterials are envisaged to be the promising components of highly active catalysts, drug delivery systems, molecular probe sensors, surface enhanced Raman spectroscopy techniques, and
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2018

Hybrid nanomaterials: from the laboratory to the market

  • Verónica de Zea Bermudez,
  • Fabrice Leroux,
  • Pierre Rabu and
  • Andreas Taubert

Beilstein J. Nanotechnol. 2017, 8, 861–862, doi:10.3762/bjnano.8.87

Graphical Abstract
  • , France Université de Strasbourg, CNRS, Institut de Physique et Chimie de Matériaux de Strasbourg, F-67034 Strasbourg, France Institute of Chemistry, University of Potsdam, D-14476 Potsdam, Germany 10.3762/bjnano.8.87 Keywords: hybrid nanomaterials; Materials, in all forms, are one of the mainstays of
  • to bring the most promising materials to the market for the benefit of the entire world. This Thematic Series “Hybrid nanomaterials: from the laboratory to the market” was inspired by a series of symposia on advanced hybrid materials held at the E-MRS Spring Meetings in 2010, 2012, 2014, and 2016
PDF
Editorial
Published 13 Apr 2017

Hierarchical coassembly of DNA–triptycene hybrid molecular building blocks and zinc protoporphyrin IX

  • Rina Kumari,
  • Sumit Singh,
  • Mohan Monisha,
  • Sourav Bhowmick,
  • Anindya Roy,
  • Neeladri Das and
  • Prolay Das

Beilstein J. Nanotechnol. 2016, 7, 697–707, doi:10.3762/bjnano.7.62

Graphical Abstract
  • therapy (PDT) applications as well as photocatalytic reactions. Keywords: DNA nanostructure; DNA–organic hybrid; DNA self-assembly; 2,6,14-triptycenetripropiolic acid; zinc protoporphyrin IX; Introduction Hybrid nanomaterials resulting from the covalent conjugation of DNA with organic molecules [1][2][3
PDF
Album
Supp Info
Full Research Paper
Published 12 May 2016

Pt- and Pd-decorated MWCNTs for vapour and gas detection at room temperature

  • Hamdi Baccar,
  • Atef Thamri,
  • Pierrick Clément,
  • Eduard Llobet and
  • Adnane Abdelghani

Beilstein J. Nanotechnol. 2015, 6, 919–927, doi:10.3762/bjnano.6.95

Graphical Abstract
  • sensors. However, to our knowledge, this is the first time that the response of Pd- or Pt-decorated carbon nanotubes toward methanol, ethanol and acetone is reported, although other authors have studied the response of such hybrid nanomaterials toward nitrogen dioxide. Star and co-workers report a small
PDF
Album
Full Research Paper
Published 09 Apr 2015

Silica micro/nanospheres for theranostics: from bimodal MRI and fluorescent imaging probes to cancer therapy

  • Shanka Walia and
  • Amitabha Acharya

Beilstein J. Nanotechnol. 2015, 6, 546–558, doi:10.3762/bjnano.6.57

Graphical Abstract
  • -shell-encapsulated hybrid nanomaterials consisting of paramagnetic Gd3+ ions and QDs or Au nanocrystals. The citric-acid-capped gold colloids and CdSe/ZnS QDs were silanized by using mercaptopropyltrimethoxysilane (MPS) as surfactant. Further, a Gd3+-DOTA (tetraazacyclododecanetetraacetic acid) complex
PDF
Album
Review
Published 24 Feb 2015
Other Beilstein-Institut Open Science Activities